[chatGPT] 파이썬, LSTM 혹은 numpy, torch 질답 모음
The "forget gate" is a crucial component of the Long Short-Term Memory (LSTM) network, which is a type of recurrent neural network that is designed to handle sequence data. The forget gate is responsible for selectively forgetting or remembering information from the previous time step.
In an LSTM network, the forget gate is implemented using a sigmoid activation function and a set of weights and biases. The input to the forget gate is the concatenation of the previous hidden state and the current input. The output of the forget gate is a vector of values between 0 and 1, which represent the degree to which each element of the previous hidden state should be retained or forgotten.
The forget gate works by multiplying the previous hidden state by the output of the forget gate, element-wise. This produces a modified hidden state that selectively retains or forgets information from the previous time step, depending on the output of the forget gate.
During backpropagation, the gradients of the error with respect to the parameters of the forget gate are calculated using the chain rule of calculus. Specifically, the gradients of the error with respect to the output of the forget gate are computed first. These gradients are then used to compute the gradients of the error with respect to the weights and biases of the forget gate, which are then used to update the parameters of the network using an optimization algorithm such as stochastic gradient descent.
Overall, the forget gate is a powerful mechanism that enables LSTM networks to selectively retain or forget information from the previous time step, which makes them particularly effective for handling long-term dependencies in sequence data.
In a Long Short-Term Memory (LSTM) network, the forget gate is responsible for determining which information from the previous hidden state should be discarded and which information should be passed on to the current hidden state.
The forget gate takes two inputs: the previous hidden state (h_{t-1}) and the current input (x_t). It then applies a sigmoid function to the concatenation of these inputs, which outputs a number between 0 and 1 for each element of the hidden state vector.
This number represents the degree to which the corresponding element in the previous hidden state should be forgotten. If the number is close to 0, then the element in the previous hidden state is mostly forgotten, while if the number is close to 1, then the element is mostly preserved.
The forget gate is then used to modulate the previous hidden state by multiplying it element-wise with the output of the forget gate. This means that the elements of the previous hidden state that are associated with a forget gate value close to 0 will be set to 0, effectively forgetting that information. The elements associated with a forget gate value close to 1 will be preserved and passed on to the next time step.
In this way, the forget gate in an LSTM network allows the network to selectively remember or forget information from previous hidden states based on the current input, which can be useful for tasks that require the network to maintain a long-term memory over many time steps.
Q. Can you explaim me what 'dists[i,:] = np.sqrt(np.sum((X[i,:] - self.X_train)**2, axis = 1)' means using simple example?
A. Sure! Let's say we have two matrices X and self.X_train:
X = [[2, 4, 6],
[1, 3, 5]]
self.X_train = [[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]
We want to compute the Euclidean distance between each row of X and each row of self.X_train. The code dists[i,:] = np.sqrt(np.sum((X[i,:] - self.X_train)**2, axis = 1) does this computation in a vectorized way.
The i in dists[i,:] is the row index of X for which we are computing the distances. For example, if i=0, we are computing the distances between the first row of X and all the rows of self.X_train.
The code (X[i,:] - self.X_train)**2 computes the squared difference between the i-th row of X and each row of self.X_train.
The code np.sum((X[i,:] - self.X_train)**2, axis = 1) sums up the squared differences along axis=1. This computes the squared Euclidean distance between the i-th row of X and each row of self.X_train. The result is a 1D numpy array of length 3, since there are 3 rows in self.X_train.
Finally, the code np.sqrt(np.sum((X[i,:] - self.X_train)**2, axis = 1)) takes the square root of the squared distances to get the Euclidean distances, and assigns the result to the i-th row of the dists array.
So, after running the code, we would get dists as follows:
dists = [[1.73205081, 5.19615242, 8.66025404],
[0. , 3.46410162, 6.92820323]]
The (i, j)-th entry of this array is the Euclidean distance between the i-th row of X and the j-th row of self.X_train. For example, the distance between the first row of X and the third row of self.X_train is 8.66.
torch.parameter와 torch.linear의 차이
PyTorch, nn.매개 변수 및 nn.선형은 서로 다른 목적으로 사용되는 두 개의 서로 다른 클래스입니다.
nn.파라미터는 교육 과정에서 최적화할 수 있는 매개 변수 텐서를 만드는 데 사용되는 클래스입니다. 그것은 torch의 하위 클래스입니다. 텐서 클래스 및 신경망에서 가중치 및 편향과 같은 학습 가능한 매개 변수를 만드는 데 사용할 수 있습니다. nn의 인스턴스일 때.매개 변수가 생성되고 모듈의 매개 변수로 등록되며 역전파 중에 해당 기울기가 계산됩니다.
nn.반면 선형은 입력 텐서의 선형 변환을 만드는 데 사용되는 클래스입니다. 입력 텐서를 가져와서 가중치 행렬과 선택적 바이어스 벡터를 사용하여 선형 변환을 적용합니다. 가중치 및 치우침 매개변수는 nn의 인스턴스로 생성됩니다.매개 변수 및 는 모듈의 매개 변수로 등록됩니다. 훈련 중에 역전파를 통해 가중치 및 편향 매개 변수의 값이 업데이트됩니다.
요약하면, nn.매개 변수는 훈련 중에 최적화될 수 있는 학습 가능한 매개 변수 텐서를 생성하는 데 사용되는 반면 nn.선형은 nn의 인스턴스로 생성된 학습 가능한 가중치와 편향 매개 변수를 포함하는 선형 변환 모듈을 만드는 데 사용됩니다.매개 변수. nn.선형은 nn을 사용합니다.학습 가능한 가중치 및 치우침 매개변수를 만드는 내부 매개변수입니다.
nn.파라미터는 분해해서 다시 조립할 수 있는 장난감 자동차와 같습니다. 당신은 바퀴나 색깔을 바꿀 수 있고, 그것은 자동차가 어떻게 작동하는지에 영향을 미칠 것입니다. 마찬가지로, 신경망에서, nn.매개 변수는 교육 중에 변경할 수 있는 학습 가능한 부품을 만드는 방법입니다. 이것은 수학적 방정식의 가중치와 편향과 같습니다. 하지만 고정된 값이 되는 대신 모델이 학습함에 따라 변화하도록 허용됩니다.
nn.리니어는 장난감 자동차를 장난감 비행기로 만드는 기계와 같습니다. 규칙 집합을 사용하여 입력을 특정 방식으로 변환합니다. 신경망에서, nn.선형은 입력 데이터의 선형 변환을 생성하는 방법입니다. 훈련 중에 학습된 일련의 가중치와 편향을 입력에 적용하여 입력과 다른 출력을 생성합니다.
따라서 nn.parameter는 훈련 중에 변경할 수 있는 부품을 생성하는 방법이고 nn.선형은 학습된 가중치와 편향을 사용하여 입력 데이터를 변환하는 방법입니다. nn.선형은 nn을 사용합니다.학습 가능한 가중치와 편향을 만드는 매개 변수입니다.
Insight into PyTorch.nn: Parameter vs. Linear vs. Embedding | by Audrey Wang | Medium
Insight into PyTorch.nn: Parameter vs. Linear vs. Embedding
In a recent PyTorch practice, I used the torch.nn.Parameter() class to create a module parameter but found the parameter was initialized…
audreywongkg.medium.com
이 사이트에서 linear과 parameter의 차이를 설명.
Yes, torch.nn.Parameter is a class that is used to define learnable parameters in PyTorch models, including those used in torch.nn.Linear modules.
In PyTorch, torch.nn.Parameter is a subclass of torch.Tensor, which means that it behaves like a tensor, but with the added functionality of being registered as a learnable parameter in a PyTorch model. When a torch.nn.Parameter object is created, it is automatically registered as a parameter of the module that created it, and its requires_grad attribute is set to True by default. This means that any operations involving the parameter will be included in the computation graph and its gradient will be computed during backpropagation.
torch.nn.Linear is a PyTorch module that contains two learnable parameters: a weight matrix and a bias vector. These parameters are instances of torch.nn.Parameter and are automatically registered as parameters of the torch.nn.Linear module when it is created. During training, these parameters are adjusted by the optimizer to minimize the loss function.
Here is an example of creating a torch.nn.Linear module and inspecting its learnable parameters:
import torch
linear = torch.nn.Linear(3, 5)
print(linear.weight) # Parameter containing: [torch.FloatTensor of size 5x3]
print(linear.bias) # Parameter containing: [torch.FloatTensor of size 5]
print(linear.parameters) # <generator object Module.parameters at 0x7fe55644fba0>
In this example, linear is a torch.nn.Linear module that takes an input tensor with 3 features and produces an output tensor with 5 features. The linear module has two learnable parameters: linear.weight and linear.bias. Both of these parameters are instances of torch.nn.Parameter. The linear.parameters method returns a generator that yields all of the learnable parameters of the module, including linear.weight and linear.bias.
So to summarize, torch.nn.Parameter is a class used to define learnable parameters in PyTorch models, including those used in torch.nn.Linear modules.